Functional and structural characterization of a cation-dependent O-methyltransferase from the cyanobacterium Synechocystis sp. strain PCC 6803.

نویسندگان

  • Jakub Grzegorz Kopycki
  • Milton T Stubbs
  • Wolfgang Brandt
  • Martin Hagemann
  • Andrea Porzel
  • Jürgen Schmidt
  • Willibald Schliemann
  • Meinhart H Zenk
  • Thomas Vogt
چکیده

The coding sequence of the cyanobacterium Synechocystis sp. strain PCC 6803 slr0095 gene was cloned and functionally expressed in Escherichia coli. The corresponding enzyme was classified as a cation- and S-adenosyl-l-methionine-dependent O-methyltransferase (SynOMT), consistent with considerable amino acid sequence identities to eukaryotic O-methyltransferases (OMTs). The substrate specificity of SynOMT was similar with those of plant and mammalian CCoAOMT-like proteins accepting a variety of hydroxycinnamic acids and flavonoids as substrates. In contrast to the known mammalian and plant enzymes, which exclusively methylate the meta-hydroxyl position of aromatic di- and trihydroxy systems, Syn-OMT also methylates the para-position of hydroxycinnamic acids like 5-hydroxyferulic and 3,4,5-trihydroxycinnamic acid, resulting in the formation of novel compounds. The x-ray structure of SynOMT indicates that the active site allows for two alternative orientations of the hydroxylated substrates in comparison to the active sites of animal and plant enzymes, consistent with the observed preferred para-methylation and position promiscuity. Lys(3) close to the N terminus of the recombinant protein appears to play a key role in the activity of the enzyme. The possible implications of these results with respect to modifications of precursors of polymers like lignin are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The cyanobacterium Synechocystis sp. strain PCC 6803 expresses a DNA methyltransferase specific for the recognition sequence of the restriction endonuclease PvuI.

By use of restriction endonucleases, the DNA of the cyanobacterium Synechocystis sp. strain PCC 6803 was analyzed for DNA-specific methylation. Three different recognition sites of methyltransferases, a dam-like site including N6-methyladenosine and two other sites with methylcytosine, were identified, whereas no activities of restriction endonucleases could be detected in this strain. slr0214,...

متن کامل

Adenylyl cyclase activity of Cya1 from the cyanobacterium Synechocystis sp. strain PCC 6803 is inhibited by bicarbonate.

Bicarbonate stimulates the activities of several class III adenylyl cyclases studied to date. However, we show here that bicarbonate decreased V(max) and substrate affinity in Cya1, a major adenylyl cyclase in the cyanobacterium Synechocystis sp. strain PCC 6803. This indicates that manifestation of the bicarbonate responsiveness is specifically modulated in Cya1.

متن کامل

Finished Genome Sequence of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC 6714

Synechocystis sp. strain PCC 6714 is a unicellular cyanobacterium closely related to the popular model organism Synechocystis sp. strain PCC 6803. A combination of PacBio SMRT and Illumina GAIIx data results in a highly accurate finished genome sequence that provides a reliable resource for further comparative analyses.

متن کامل

Four novel genes required for optimal photoautotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803 identified by in vitro transposon mutagenesis.

Four novel Synechocystis sp. strain PCC 6803 genes (sll1495, sll0804, slr1306, and slr1125) which encode hypothetical proteins were determined by transposon mutagenesis to be required for optimal photoautotrophic growth. Mutations were also recovered in ccmK4, a carboxysome coat protein homologue, and me, the decarboxylating NADP(+)-dependent malic enzyme. This is the first report that these kn...

متن کامل

Systematic characterization of the ADP-ribose pyrophosphatase family in the Cyanobacterium Synechocystis sp. strain PCC 6803.

We have characterized four putative ADP-ribose pyrophosphatases Sll1054, Slr0920, Slr1134, and Slr1690 in the cyanobacterium Synechocystis sp. strain PCC 6803. Each of the recombinant proteins was overexpressed in Escherichia coli and purified. Sll1054 and Slr0920 hydrolyzed ADP-ribose specifically, while Slr1134 hydrolyzed not only ADP-ribose but also NADH and flavin adenine dinucleotide. By c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 283 30  شماره 

صفحات  -

تاریخ انتشار 2008